Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
Nature ; 624(7991): 366-377, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092913

ABSTRACT

Cytosine DNA methylation is essential in brain development and is implicated in various neurological disorders. Understanding DNA methylation diversity across the entire brain in a spatial context is fundamental for a complete molecular atlas of brain cell types and their gene regulatory landscapes. Here we used single-nucleus methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq)1 technologies to generate 301,626 methylomes and 176,003 chromatin conformation-methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell taxonomy with 4,673 cell groups and 274 cross-modality-annotated subclasses. We identified 2.6 million differentially methylated regions across the genome that represent potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide spatial transcriptomics data validated the association of spatial epigenetic diversity with transcription and improved the anatomical mapping of our epigenetic datasets. Furthermore, chromatin conformation diversities occurred in important neuronal genes and were highly associated with DNA methylation and transcription changes. Brain-wide cell-type comparisons enabled the construction of regulatory networks that incorporate transcription factors, regulatory elements and their potential downstream gene targets. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a whole-brain SMART-seq2 dataset. Our study establishes a brain-wide, single-cell DNA methylome and 3D multi-omic atlas and provides a valuable resource for comprehending the cellular-spatial and regulatory genome diversity of the mouse brain.


Subject(s)
Brain , DNA Methylation , Epigenome , Multiomics , Single-Cell Analysis , Animals , Mice , Brain/cytology , Brain/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Cytosine/metabolism , Datasets as Topic , Transcription Factors/metabolism , Transcription, Genetic
3.
Nature ; 624(7991): 355-365, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092919

ABSTRACT

Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.


Subject(s)
Brain , Epigenomics , Neural Pathways , Neurons , Animals , Mice , Amygdala , Brain/cytology , Brain/metabolism , Consensus Sequence , Datasets as Topic , Gene Expression Profiling , Hypothalamus/cytology , Mesencephalon/cytology , Neural Pathways/cytology , Neurons/metabolism , Neurotransmitter Agents/metabolism , Regulatory Sequences, Nucleic Acid , Rhombencephalon/cytology , Single-Cell Analysis , Thalamus/cytology , Transcription Factors/metabolism
4.
Nature ; 624(7991): 390-402, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092918

ABSTRACT

Divergence of cis-regulatory elements drives species-specific traits1, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains unclear. Here we investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset and mouse using single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome and chromosomal conformation profiles from a total of over 200,000 cells. From these data, we show evidence that divergence of transcription factor expression corresponds to species-specific epigenome landscapes. We find that conserved and divergent gene regulatory features are reflected in the evolution of the three-dimensional genome. Transposable elements contribute to nearly 80% of the human-specific candidate cis-regulatory elements in cortical cells. Through machine learning, we develop sequence-based predictors of candidate cis-regulatory elements in different species and demonstrate that the genomic regulatory syntax is highly preserved from rodents to primates. Finally, we show that epigenetic conservation combined with sequence similarity helps to uncover functional cis-regulatory elements and enhances our ability to interpret genetic variants contributing to neurological disease and traits.


Subject(s)
Conserved Sequence , Evolution, Molecular , Gene Expression Regulation , Gene Regulatory Networks , Mammals , Neocortex , Animals , Humans , Mice , Callithrix/genetics , Chromatin/genetics , Chromatin/metabolism , Conserved Sequence/genetics , DNA Methylation , DNA Transposable Elements/genetics , Epigenome , Gene Expression Regulation/genetics , Macaca/genetics , Mammals/genetics , Motor Cortex/cytology , Motor Cortex/metabolism , Multiomics , Neocortex/cytology , Neocortex/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Single-Cell Analysis , Transcription Factors/metabolism , Genetic Variation/genetics
5.
Science ; 382(6667): eadf5357, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824674

ABSTRACT

Delineating the gene-regulatory programs underlying complex cell types is fundamental for understanding brain function in health and disease. Here, we comprehensively examined human brain cell epigenomes by probing DNA methylation and chromatin conformation at single-cell resolution in 517 thousand cells (399 thousand neurons and 118 thousand non-neurons) from 46 regions of three adult male brains. We identified 188 cell types and characterized their molecular signatures. Integrative analyses revealed concordant changes in DNA methylation, chromatin accessibility, chromatin organization, and gene expression across cell types, cortical areas, and basal ganglia structures. We further developed single-cell methylation barcodes that reliably predict brain cell types using the methylation status of select genomic sites. This multimodal epigenomic brain cell atlas provides new insights into the complexity of cell-type-specific gene regulation in adult human brains.


Subject(s)
Brain , DNA Methylation , Epigenesis, Genetic , Adult , Humans , Male , Brain/cytology , Brain/metabolism , Chromatin/metabolism , Genome, Human , Single-Cell Analysis , Imaging, Three-Dimensional , Atlases as Topic
6.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131654

ABSTRACT

Cytosine DNA methylation is essential in brain development and has been implicated in various neurological disorders. A comprehensive understanding of DNA methylation diversity across the entire brain in the context of the brain's 3D spatial organization is essential for building a complete molecular atlas of brain cell types and understanding their gene regulatory landscapes. To this end, we employed optimized single-nucleus methylome (snmC-seq3) and multi-omic (snm3C-seq1) sequencing technologies to generate 301,626 methylomes and 176,003 chromatin conformation/methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell type taxonomy that contains 4,673 cell groups and 261 cross-modality-annotated subclasses. We identified millions of differentially methylated regions (DMRs) across the genome, representing potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide multiplexed error-robust fluorescence in situ hybridization (MERFISH2) data validated the association of this spatial epigenetic diversity with transcription and allowed the mapping of the DNA methylation and topology information into anatomical structures more precisely than our dissections. Furthermore, multi-scale chromatin conformation diversities occur in important neuronal genes, highly associated with DNA methylation and transcription changes. Brain-wide cell type comparison allowed us to build a regulatory model for each gene, linking transcription factors, DMRs, chromatin contacts, and downstream genes to establish regulatory networks. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a companion whole-brain SMART-seq3 dataset. Our study establishes the first brain-wide, single-cell resolution DNA methylome and 3D multi-omic atlas, providing an unparalleled resource for comprehending the mouse brain's cellular-spatial and regulatory genome diversity.

7.
bioRxiv ; 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37066152

ABSTRACT

Sequence divergence of cis- regulatory elements drives species-specific traits, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains to be elucidated. We investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset, and mouse with single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome, and chromosomal conformation profiles from a total of over 180,000 cells. For each modality, we determined species-specific, divergent, and conserved gene expression and epigenetic features at multiple levels. We find that cell type-specific gene expression evolves more rapidly than broadly expressed genes and that epigenetic status at distal candidate cis -regulatory elements (cCREs) evolves faster than promoters. Strikingly, transposable elements (TEs) contribute to nearly 80% of the human-specific cCREs in cortical cells. Through machine learning, we develop sequence-based predictors of cCREs in different species and demonstrate that the genomic regulatory syntax is highly preserved from rodents to primates. Lastly, we show that epigenetic conservation combined with sequence similarity helps uncover functional cis -regulatory elements and enhances our ability to interpret genetic variants contributing to neurological disease and traits.

9.
Nature ; 598(7879): 120-128, 2021 10.
Article in English | MEDLINE | ID: mdl-34616061

ABSTRACT

Mammalian brain cells show remarkable diversity in gene expression, anatomy and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. Here we carry out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single-nucleus DNA methylation sequencing1,2 to profile 103,982 nuclei (including 95,815 neurons and 8,167 non-neuronal cells) from 45 regions of the mouse cortex, hippocampus, striatum, pallidum and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, we constructed an artificial neural network model that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data3 enabled prediction of high-confidence enhancer-gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments4. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse cerebrum.


Subject(s)
Brain/cytology , DNA Methylation , Epigenome , Epigenomics , Neurons/classification , Neurons/metabolism , Single-Cell Analysis , Animals , Atlases as Topic , Brain/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Cytosine/chemistry , Cytosine/metabolism , Datasets as Topic , Dentate Gyrus/cytology , Enhancer Elements, Genetic/genetics , Gene Expression Profiling , Hippocampus/cytology , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Biological , Neural Pathways , Neurons/cytology
10.
Nature ; 598(7879): 167-173, 2021 10.
Article in English | MEDLINE | ID: mdl-34616065

ABSTRACT

Neuronal cell types are classically defined by their molecular properties, anatomy and functions. Although recent advances in single-cell genomics have led to high-resolution molecular characterization of cell type diversity in the brain1, neuronal cell types are often studied out of the context of their anatomical properties. To improve our understanding of the relationship between molecular and anatomical features that define cortical neurons, here we combined retrograde labelling with single-nucleus DNA methylation sequencing to link neural epigenomic properties to projections. We examined 11,827 single neocortical neurons from 63 cortico-cortical and cortico-subcortical long-distance projections. Our results showed unique epigenetic signatures of projection neurons that correspond to their laminar and regional location and projection patterns. On the basis of their epigenomes, intra-telencephalic cells that project to different cortical targets could be further distinguished, and some layer 5 neurons that project to extra-telencephalic targets (L5 ET) formed separate clusters that aligned with their axonal projections. Such separation varied between cortical areas, which suggests that there are area-specific differences in L5 ET subtypes, which were further validated by anatomical studies. Notably, a population of cortico-cortical projection neurons clustered with L5 ET rather than intra-telencephalic neurons, which suggests that a population of L5 ET cortical neurons projects to both targets. We verified the existence of these neurons by dual retrograde labelling and anterograde tracing of cortico-cortical projection neurons, which revealed axon terminals in extra-telencephalic targets including the thalamus, superior colliculus and pons. These findings highlight the power of single-cell epigenomic approaches to connect the molecular properties of neurons with their anatomical and projection properties.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Epigenome , Epigenomics , Neural Pathways , Neurons/classification , Neurons/metabolism , Animals , Brain Mapping , Female , Male , Mice , Neurons/cytology
11.
Nature ; 598(7879): 111-119, 2021 10.
Article in English | MEDLINE | ID: mdl-34616062

ABSTRACT

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.


Subject(s)
Motor Cortex/cytology , Neurons/classification , Single-Cell Analysis , Animals , Atlases as Topic , Callithrix/genetics , Epigenesis, Genetic , Epigenomics , Female , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Gene Expression Profiling , Glutamates/metabolism , Humans , In Situ Hybridization, Fluorescence , Male , Mice , Middle Aged , Motor Cortex/anatomy & histology , Neurons/cytology , Neurons/metabolism , Organ Specificity , Phylogeny , Species Specificity , Transcriptome
12.
Nature ; 583(7818): 752-759, 2020 07.
Article in English | MEDLINE | ID: mdl-32728242

ABSTRACT

Cytosine DNA methylation is essential for mammalian development but understanding of its spatiotemporal distribution in the developing embryo remains limited1,2. Here, as part of the mouse Encyclopedia of DNA Elements (ENCODE) project, we profiled 168 methylomes from 12 mouse tissues or organs at 9 developmental stages from embryogenesis to adulthood. We identified 1,808,810 genomic regions that showed variations in CG methylation by comparing the methylomes of different tissues or organs from different developmental stages. These DNA elements predominantly lose CG methylation during fetal development, whereas the trend is reversed after birth. During late stages of fetal development, non-CG methylation accumulated within the bodies of key developmental transcription factor genes, coinciding with their transcriptional repression. Integration of genome-wide DNA methylation, histone modification and chromatin accessibility data enabled us to predict 461,141 putative developmental tissue-specific enhancers, the human orthologues of which were enriched for disease-associated genetic variants. These spatiotemporal epigenome maps provide a resource for studies of gene regulation during tissue or organ progression, and a starting point for investigating regulatory elements that are involved in human developmental disorders.


Subject(s)
DNA Methylation , Epigenome , Fetus/embryology , Fetus/metabolism , Animals , Animals, Newborn , Chromatin/genetics , Chromatin/metabolism , Disease/genetics , Down-Regulation , Enhancer Elements, Genetic/genetics , Epigenetic Repression , Female , Gene Silencing , Humans , Mice , Mice, Inbred C57BL , Models, Animal , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Spatio-Temporal Analysis
13.
Elife ; 72018 09 06.
Article in English | MEDLINE | ID: mdl-30188322

ABSTRACT

Vascular endothelial cell (EC) function depends on appropriate organ-specific molecular and cellular specializations. To explore genomic mechanisms that control this specialization, we have analyzed and compared the transcriptome, accessible chromatin, and DNA methylome landscapes from mouse brain, liver, lung, and kidney ECs. Analysis of transcription factor (TF) gene expression and TF motifs at candidate cis-regulatory elements reveals both shared and organ-specific EC regulatory networks. In the embryo, only those ECs that are adjacent to or within the central nervous system (CNS) exhibit canonical Wnt signaling, which correlates precisely with blood-brain barrier (BBB) differentiation and Zic3 expression. In the early postnatal brain, single-cell RNA-seq of purified ECs reveals (1) close relationships between veins and mitotic cells and between arteries and tip cells, (2) a division of capillary ECs into vein-like and artery-like classes, and (3) new endothelial subtype markers, including new validated tip cell markers.


Subject(s)
Central Nervous System/cytology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Epigenesis, Genetic , Transcription, Genetic , Amino Acid Motifs , Animals , Base Sequence , Brain/metabolism , Chromatin/metabolism , DNA Methylation/genetics , Dopa Decarboxylase/metabolism , Green Fluorescent Proteins/metabolism , Liver/metabolism , Lung/metabolism , Male , Mice, Transgenic , Multigene Family , Organ Specificity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , Transcription Factors/metabolism , Wnt Signaling Pathway
14.
Proc Natl Acad Sci U S A ; 114(9): E1633-E1640, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28193886

ABSTRACT

Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulatory element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared with existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types. REPTILE is available at https://github.com/yupenghe/REPTILE/.


Subject(s)
Enhancer Elements, Genetic/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation/genetics , Algorithms , Computational Biology/methods , DNA Methylation/genetics , Epigenomics/methods , Genomics/methods , Histone Code/genetics , Histones/genetics , Humans , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...